Jumat, 02 Juni 2017

review film

The Time Machine
  1. Main story of the movie
One day in New York City, in 1899, Alexander Hartdegen was a scientist and also a lecturer at Columbia University. One night, Alex finds the bitter truth of his life, where he has to lose Emma, His lover shortly after he proposes to her in  the city park. His lover was killed by a clumsy mugger.Emma's death made Alex feel very sad. Ridden with memory of his beloved Emma, Alex studied science and conducted experiments to create a machine that could bring him back the times he wanted that he could return to a time when his lover was killed, and save his lover life. Four years later, Alex finally managed to create a time machine that can take him to explore the time and back to the time when he want proposes to her. But reality Does not meet Expectation, even though he managed to save Emma from  mugger, but Emma was still killed although not for being shot by mugger. Alex was getting sad, eventually he Decide went exploring the time to find answer why he could not change his past. Instead of going back to the past, he was exploring  the future, until he was willing to be stranded in 802701, in order to get an answer to his question. In the future, Alex who came in unconscious was helped by Mara and he also met with two different human races, Eloi and Morlock. One day Mara is kidnapped by the Morlocks, Alex struggled to save her, and he meets the Über-Morlock, the leader of the Morlocks. Über-Morlock can read Alex's past and he says even though the technology is growing rapidly,even able to create a far more sophisticated time Machine than that humanity can create,no one can change the destiny of death. Alex was realized that and he also intends to fix everything. 


  1. Moral values in the movie
humans will not be able to change the destiny that has been established by God. No matter how great humans and sophisticated technology they have, human will not be able to change the destiny of death or things that have happened in the past.

  1. Best lesson that you can get from the movie related to your own life
Life is not always beautiful, sometimes we get happiness but in the other times we are in tough times. Sometimes we make mistakes, but from that mistake we find an achievement. Do not be sad about things that have happened in the past, because life must be walking forward. Learn from mistakes in the past to be a lesson in our lives, so we do not fall in the same fault


  1. Best character of the movie and the reasons
Best character of the movie is Alexander and the reason why I choose Alex to best character of the movie because of the persistence, effort and hard work of alex in achieving his goals. His unyielding nature to get what he wants and also has a responsible for what he has done.



Selasa, 18 April 2017

The Internet of Things (IoT) in Agriculture: Farmer reduces water costs by 75%

MUHAMMAD FAHMI SALEH
25113891
4KB05

California avocado farmer Kurt Bantle decided to experiment with Internet of Things (IoT) connected technology to see if costly water consumption could be reduced in growing his 900 avocado trees.
He divided his farm into 22 irrigation blocks and inserted two soil moisture measurement units into each block. All soil moisture data is collected from the avocado trees into a cloud, and when a tree needs to be watered, the solution turns the sprinklers on automatically.

Rabu, 18 Januari 2017

macam-macam metode peramalan trand

PERAMALAN DENGAN TREND
  Trend adalah rata-rata perubahan dalam jangka panjang (biasanya tiap tahun)
  Trend dapat berupa trend naik yang disebut trend positif dan dapat pula berupa trend turun yang disebut trend negatif
  Disebut trend positif apabila variabel yang diteliti (Y) menunjukkan gejala kenaikan atau menunjukkan rata-rata pertambahan
  Disebut trend negatif apabila variabel yang diteliti (Y) menunjukkan gejala semakin menurun atau menunjukkan rata-rata penurunan
  Trend dapat berupa trend linear, trend parabola/kwadratik, dan trend eksponensial
  Untuk menghitung trend ada 4 metode :
  Free hands method (metode tangan bebas)
  Semi averages method (metode setengah rata-rata)
  Moving averages method (metode rata-rata bergerak)
  Least square method (metode kwadrat terkecil)

  TREND LINEAR  dengan Metode Kwadrat Terkecil
  Trend linear adalah trend dengan menggunakan persamaan garis lurus:
       Y = a + bX
  Trend Linier…
Formulasi:


 Ŷ = Y cap= nilai trend (forecast)
 a = konstanta
 b = slope/kecondongan
 x = waktu (tahun)
  Rumus 1:
  Rumus 2 :
       
           Y
a =
          n
  Contoh:
  Suatu perusahaan mempunyai volume permintaan sebagai berikut:

  Cari nilai a dan b:
  Jadi, persamaan trend:
Y’  =  131  +  7,18 X
Peramalan penjualan tahun 2010:
Y’  =  131  +  7,18 X
Y’  =  131  +  7,18 (4)
     =  159,72
Peramalan penjualan tahun 2011:
Y’  =  131  +  7,18 X
Y’  =  131  +  7,18 (5)
     =  166,9


  Contoh soal:
       Data produksi PT Prima Lestari 10 tahun terakhir sejak tahun 2001 sebagai berikut:
       2, 3, 6, 8, 10,12 ,14,17, 20 dan 21
              Tentukan persamaan garis trendnya?
              Tentukan peramalan tahun 2011 dan 2012 ?

  Least Square Method
(Metode Kwadrat Terkecil)
  Contoh soal:
  Least Square Method
(Metode Kwadrat Terkecil)
  SY    = n a  +  b X
XY = a X + b X2
  111 = 10 a +   55 b  55  6105 = 550 a + 3025 b
  792 = 55 a + 385 b  10  7920 = 550 a + 3850 b 
  METODE  ANALISIS TREND:    Trend Non Linier
  TREND KUADRATIK
       Merupakan trend yang nilai variabel tak bebasnya naik atau turun secara linier atau terjadi parabola bila datanya dibuat scatter plot (hubungan variabel dependen dan independen adalah kuadratik) dan merupakan metode trend non linier.

  Bentuk kurva trend kuadratik:
  Formulasi trend kuadratik:
Ŷ = a + bX + cX2
  Lanjutan……..
  Untuk melakukan suatu peramalan dengan metode trend kuadratik, maka kita harus mencari nilai konstanta a,b dan c terlebih dahulu dengan menggunakan rumus sebagai berikut:

  Rumus 1:
  Dengan menggunakan rumus tiga persamaan normal:
åY     = n. a + b åX + c åX2
åXY  = a åX + b åX2 + c X3
åX2Y)= a X2 + b X3  + c X4

  Jika menggunakan x dengan  skala angka (-3,-2,-1,0,1,2,3) baik pada data ganjil maupun genap maka, X dan å X3  = 0,
  Lanjutan…..
       sehingga persamaan diatas dapat disederhanakan menjadi:
åY     = n. a + c åX2
åXY  = b åX2
åX2Y= a X2 + c X4

  Rumus 2:
          (åY) (åX4) (X2Y) (X2)
a  =
                 n (X4) - (X2)2

b  =   XY/åX2

c  =   n(X2Y) (X2 ) ( Y)/ n (X4) - (X2)2
  Contoh soal:
  Next……..
n= ganjil………2005;  X=0
Persamaan normal:

  Dari persamaan 1 dan 3
13.219   = 11 a +   110 c   x10     132.190 = 110 a + 1.100 c
140.683 = 110 a + 1958c             140.683 = 110 a + 1.958 c 
                                                     - 8.493   = -858 c
                                                                c  =  9,90
  Next……..
 x= 6
 Ŷ20I1 = 1.102,73 + 109,92(6) + 9,90(62)
            = 1.102,73 + 659,52 + 356,4
               = 2.118,65
  Latihan soal:
  Data jumlah pelanggan PT Telkom tahun 2002-2006sebagai berikut:





   Carilah persamaan trend kuadratik dan hitung peramalan jumlah pelanggan tahun 2007 dan 2010 !
  Trend Non Linier :
Trend Eksponensial
       Adalah suatu tren yang mempunyai pangkat atau eksponen dari waktunya. Bentuk persamaan eksponensial dirumuskan sebagai berikut:






  Grafik trend eksponensial
  Rumus 1:
Log  Ŷ = log a + x log b

                   log Y
Log a =
                          n

                 (x. log Y)
Log b =
                        X2
  Rumus 2:
Y’ = a (1 + b)X

Ln Y’ = Ln a + X Ln (1+b)
Sehingga    a = anti ln (åLnY)/n              
                b = anti ln   (X. LnY)          - 1
                                      åX2
  Contoh soal:
  Suatu perusahaan mempunyai data penjualan sebagai berikut:



       Y= penjualan (unit)
       Dengan menggunakan trend eksponensial, berapa proyeksi penjualan tahun 2001?

  Next…..
  Next….
 1.      Log  Ŷ = log a + x log b

                   log Y          19,5827
Log a =                  =                    = 2,1758
                          n                   9

                 (x. log Y)       4,7564
Log b =                 =                    = 0,0793
                        X2                 60

  Next……..
Jadi persamaan eksponensial:
Log  Ŷ = log a + x log b
Log  Ŷ = 2,1758 + 0,0793x

Peramalan Tahun 2001; x= 5
Log  Ŷ2001 = 2,1758 + 0,0793(5)
                        = 2,5723
Ŷ2001 = 373,51.
  Next….
2.  Y’ = a (1 + b)X

Ln Y’ = Ln a + X Ln (1+b)
Sehingga    a = anti ln (åLnY)/n      
                      a = anti ln (45,0908)/9
                       a = anti ln 5,0101
                       a = 149,9197     
              
  Next………..
 b = anti ln   (X. LnY)         - 1
                      åX2
 b = anti ln  10,9512         - 1
                      60
 b = anti ln 0,1825  - 1
 b = 1,2002 – 1 = 0,2002
Jadi, persamaannya Y’ = a (1 + b)X
Y’ = 149,9197 (1 + 0,2002)X
Y’ = 149,9197 .1,2002X 
 Y2001 = 149,9197 .1,20025
Y’2001 = 149,9197. 2,4904
Y’2001 = 373,36


  Contoh soal:
  Volume penjualan PT XYZ selama 5 tahun sejak tahun 2003 adalah 5,   5,6,   6,1,   6,7,   dan 7,2  

   Tentukan persamaan trend eksponensialnya dan berapa forecast tahun 2008-2011?